Block-length dependent thresholds in block-sparse compressed sensing
نویسنده
چکیده
Abstract One of the most basic problems in compressed sensing is solving an under-determined system of linear equations. Although this problem seems rather hard certain l1-optimization algorithm appears to be very successful in solving it. The recent work of [14,28] rigorously proved (in a large dimensional and statistical context) that if the number of equations (measurements in the compressed sensing terminology) in the system is proportional to the length of the unknown vector then there is a sparsity (number of non-zero elements of the unknown vector) also proportional to the length of the unknown vector such that l1-optimization algorithm succeeds in solving the system. In more recent papers [78,81] we considered the setup of the so-called block-sparse unknown vectors. In a large dimensional and statistical context, we determined sharp lower bounds on the values of allowable sparsity for any given number (proportional to the length of the unknown vector) of equations such that an l2/l1-optimization algorithm succeeds in solving the system. The results established in [78,81] assumed a fairly large block-length of the block-sparse vectors. In this paper we consider the block-length to be a parameter of the system. Consequently, we then establish sharp lower bounds on the values of the allowable block-sparsity as functions of the block-length.
منابع مشابه
Block-length dependent thresholds for l2/l1-optimization in block-sparse compressed sensing
One of the most basic problems in compressed sensing is solving an under-determined system of linear equations. Although this problem seems rather hard certain 1-optimization algorithm appears to be very successful in solving it. The recent work of [3, 6] rigorously proved (in a large dimensional and statistical context) that if the number of equations (measurements in the compressed sensing te...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملOptimality of $\ell_2/\ell_1$-optimization block-length dependent thresholds
The recent work of [4, 11] rigorously proved (in a large dimensional and statistical context) that if the number of equations (measurements in the compressed sensing terminology) in the system is proportional to the length of the unknown vector then there is a sparsity (number of non-zero elements of the unknown vector) also proportional to the length of the unknown vector such that l1-optimiza...
متن کاملStrong thresholds for l2/l1-optimization in block-sparse compressed sensing
It has been known for a while that l1-norm relaxation can in certain cases solve an under-determined system of linear equations. Recently, [5, 10] proved (in a large dimensional and statistical context) that if the number of equations (measurements in the compressed sensing terminology) in the system is proportional to the length of the unknown vector then there is a sparsity (number of non-zer...
متن کاملCompressed Sensing of Block-Sparse Signals: Uncertainty Relations and Efficient Recovery
We consider compressed sensing of block-sparse signals, i.e., sparse signals that have nonzero coefficients occurring in clusters. An uncertainty relation for block-sparse signals is derived, based on a block-coherence measure, which we introduce. We then show that a block-version of the orthogonal matching pursuit algorithm recovers block k-sparse signals in no more than k steps if the block-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0907.3679 شماره
صفحات -
تاریخ انتشار 2009